skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Langdon, Terence_G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. An overview of the mechanical bonding of dissimilar bulk engineering metals through high‐pressure torsion (HPT) processing at room temperature is described in this Review. A recently developed procedure of mechanical bonding involves the application of conventional HPT processing to alternately stacked two or more disks of dissimilar metals. A macroscale microstructural evolution involves the concept of making tribomaterials and, for some dissimilar metal combinations, microscale microstructural changes demonstrate the synthesis of metal matrix nanocomposites (MMNCs) through the nucleation of nanoscale intermetallic compounds within the nanostructured metal matrix. Further straining by HPT during mechanical bonding provides an opportunity to introduce limited amorphous phases and a bulk metastable state. The mechanically bonded nanostructured hybrid alloys exhibit an exceptionally high specific strength and an enhanced plasticity. These experimental findings suggest a potential for using mechanical bonding for simply and expeditiously fabricating a wide range of new alloy systems by HPT processing. 
    more » « less